Study of a fractional stochastic heat equation
نویسندگان
چکیده
In this article, we study a d-dimensional stochastic nonlinear heat equation (SNLH) with quadratic nonlinearity, forced by fractional space-time white noise: ∂ t u − ∆u = ρ 2 +Ḃ , ∈ [0, T ] x R d 0 φ. Two types of regimes are exhibited, depending on the ranges Hurst index H (H ..., d) (0, 1) d+1. particular, show that local well-posedness resulting from Da Prato-Debussche trick, is easily obtained when 2H + i=1 i > d. On contrary, much more difficult to handle ≤ case, model has be interpreted in Wick sense, thanks time-dependent renormalization. Helped regularising effect semigroup, establish results for all dimension ≥ 1. Contents
منابع مشابه
Stochastic Heat Equation Driven by Fractional Noise and Local Time
The aim of this paper is to study the d-dimensional stochastic heat equation with a multiplicative Gaussian noise which is white in space and it has the covariance of a fractional Brownian motion with Hurst parameter H ∈ (0, 1) in time. Two types of equations are considered. First we consider the equation in the Itô-Skorohod sense, and later in the Stratonovich sense. An explicit chaos developm...
متن کاملStochastic Heat Equation with Multiplicative Fractional-Colored Noise
We consider the stochastic heat equation with multiplicative noise ut = 1 2 ∆u + uẆ in R+ × R , whose solution is interpreted in the mild sense. The noise Ẇ is fractional in time (with Hurst index H ≥ 1/2), and colored in space (with spatial covariance kernel f). When H > 1/2, the equation generalizes the Itô-sense equation for H = 1/2. We prove that if f is the Riesz kernel of order α, or the ...
متن کاملStochastic Heat Equation with Infinite Dimensional Fractional Noise: L2-theory
In this article we consider the stochastic heat equation in [0, T ]× Rd, driven by a sequence (β)k of i.i.d. fractional Brownian motions of index H > 1/2 and random multiplication functions (g)k. The stochastic integrals are of Hitsuda-Skorohod type and the solution is interpreted in the weak sense. Using Malliavin calculus techniques, we prove the existence and uniqueness of the solution in a ...
متن کاملQuadratic variations for the fractional-colored stochastic heat equation∗
Using multiple stochastic integrals and Malliavin calculus, we analyze the quadratic variations of a class of Gaussian processes that contains the linear stochastic heat equation on R driven by a non-white noise which is fractional Gaussian with respect to the time variable (Hurst parameter H) and has colored spatial covariance of α-Riesz-kernel type. The processes in this class are self-simila...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ALEA-Latin American Journal of Probability and Mathematical Statistics
سال: 2023
ISSN: ['1980-0436']
DOI: https://doi.org/10.30757/alea.v20-15